نوع مقاله : مقاله علمی پژوهشی
نویسندگان
1 کارشناسی ارشد انرژی معماری، دانشگاه ایلام، ایران
2 دانشیار گروه انرژی معماری، دانشکده فنی مهندسی، دانشگاه ایلام، ایران
چکیده
چکیده تصویری
کلیدواژهها
موضوعات
عنوان مقاله [English]
نویسندگان [English]
Research Problem: Sunlight is constantly changing depending on weather conditions and the location of buildings. Exterior conditions also affect the amount of sunlight entering buildings. Urban views can also be used as a link between architecture and the city. Therefore, in order to improve the availability of sunlight in urban blocks, the influential elements in this field must also be carefully examined. On the other hand, the reflection of walls and urban surfaces can significantly affect the distribution of daylight inside buildings. The reflection of the surrounding surfaces, the geometry and the position of the neighbors affect the amount of light reaching the building. Therefore, it is necessary to investigate these factors in order to increase the use of daylight, reduce energy consumption in buildings and urban environments. Due to the existing scientific gaps, the present article examines the role of urban geometry (height and distance between buildings) and the reflectivity of urban surface materials in the cold and dry climate of Iran. In addition, solar radiation is an important component of climate and human comfort in indoor and outdoor environments. So that not paying attention to sunlight in open buildings and spaces can cause discomfort. In ancient architecture, one of the most important factors in urban design has been the attainment of sunlight, which has been evidenced by numerous evidences in the indigenous architecture around the world. The purpose of the design, in view of sunlight and energy, is to achieve more daylight into the building and sidewalks, resulting in visual comfort, health, vitality and increased efficiency in urban and indoor environments. Ignoring the solar rights of open buildings and spaces can also cause discomfort and inconvenience. In order to obtain the amount of daylight factor in indoor spaces, it is necessary to have the intensity of external lighting, which must be calculated to know the amount of external light received inside the building. Daylight can enter the building through window glass, skylights or other openings. In fact, the effect of the arrangement and geometry of residential blocks has been analyzed as an independent variable in the degree of achieving the required brightness as a dependent variable.
Research Question: The aim of this study was to investigate the effect of mentioned factors on the achievement of solar radiation in buildings and urban areas in a residential block complex. Therefore, in this study, the effect of reflectivity of the type of urban surface materials as an independent variable on the degree of achieving the required brightness as a dependent variable has been studied. Also, the effect of urban design parameters (street width and orientation) and building design (roof shape and building development design) on the amount of sunlight achieved in residential buildings has been studied.
Research Method: This research has been done by field measurement method by light meter (lux meter) and computer simulation (Relux software).
The Most Important Results and Conclusion: Finally, research has shown that the use of brick materials on vertical surfaces (building facades) and stone on horizontal surfaces (flooring) can increase the amount of light reaching urban and interior shells by up to 30%. Also, the diagonal arrangement with the distance of the urban blocks has played an effective role in the proper distribution of the wall lighting.
کلیدواژهها [English]