بررسی رفتارحرارتی ایوان در خانه‌های سنتی اصفهان جهت بازخوانی آن در معماری کنونی با هدف بهینه‌سازی مصرف انرژی

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 استادیار گروه معماری، مرکز تحقیقات افق‌های نوین در معماری و شهرسازی، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران

2 کارشناسی ارشد، گروه معماری، مرکز تحقیقات افق‌های نوین در معماری و شهرسازی، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران

چکیده

بیان مساله: با توجه به مسئله‌ ‌بحران انرژی در قرن حاضر و جایگاه حفظ محیط‌زیست و از‌آنجا‌که بخش مهمی از مصرف انرژی سالیانه کشورها، مربوط به بخش ساختمان است، در این راستا، صرفه‌جویی و یافتن راهکارهایی که بتواند مصرف انرژی سالیانه را در بخش ساختمان کاهش دهد، از اهمیت بسیاری برخوردار است. با توجه به سهم بسیار زیاد خانه در مصرف انرژی، عناصر کالبدی خانه، می‌توانند نقش به‌سزایی در کاهش مصرف انرژی داشته باشند. در این میان، عنصر نیمه باز ایوان، الگویی کارآمد از جهت کاربردی و اقلیمی مانند تعدیل دما و تأمین شرایط آسایش‌حرارتی است. این عنصر از نظر معنایی فضای گذاری است که همراه با خود تجربیات بسیار متنوع و با ارزشی از درک فضایی و طبیعت را به‌همراه می‌آورد، که در معماری امروزی نقش آن بسیار کمرنگ شده است.
سوال تحقیق: چگونه با بررسی رفتار حرارتی ایوان در خانه‌های سنتی اصفهان می‌توان به الگوی بهینه آن با هدف کاهش مصرف انرژی در مسکن معاصر دست یافت.
اهداف تحقیق: با وجود سامانه‌های غیرفعال خورشیدی در خانه‌های قدیمی نسبت به خانه‌های امروزی، مقوله بهره‌وری انرژی در این خانه‌ها بیشتر مورد توجه است، از این رو جهت استفاده معماران از عناصر و تناسبات کالبدی خانه‌های سنتی، این مقاله درصدد یافتن الگوی بهینه ایوان در خانه‌های سنتی شهر اصفهان از نظر صرفه-جویی در مصرف انرژی و بازخوانی در مسکن معاصر است.
روش تحقیق: در این مقاله الگوهای متفاوت ایوان در خانه‌های سنتی اصفهان شناسایی شد و الگوهای رایج به‌دست‌آمد، بعد از اعتبارسنجی نرم‌افزار دیزاین بیلدر با نمونه واقعی با کمک روش شبیه‌سازی، نتایج حاصل از شبیه‌سازی‌ها با یکدیگر مقایسه شد.
مهم‌ترین یافته‌ها و نتیجه‌گیری تحقیق: نتایج حاکی از آن است که الگوی کارآمدتر در میان سایر الگوها از لحاظ بهینه‌سازی مصرف انرژی به ترتیب الگوی ایوان خانه دهدشتی و الگوی خانه دکتر اعلم می‌باشد. از آنجاکه خانه دهدشتی در تابستان بیشتر مقرون‌به‌صرفه است و بار‌سرمایشی در اصفهان نسبت به زمستان مهمتر است، می‌توان نتیجه گرفت الگوی خانه دهدشتی الگوی بهینه‌تر ایوان است. در این مقاله، ایوان بهینه در مقابل اتاق‌های سه‌دری در طرفین بنا قرار دارد و ازطریق راهرویی حائل (فضای‌کنترل‌نشده) به اتاق و تالار مرتبط است، این در حالیست‌که طول راهرو نیمی از طول تالار را می‌پوشاند. همچنین به علت بهینه‌تر بودن مصرف انرژی در الگوی ایوان‌دار این خانه نسبت به الگوی بدون‌ایوان، این مساله اهمیت استفاده از ایوان در نمای جنوبی خانه‌های معاصر اصفهان را نشان می‌دهد.

چکیده تصویری

بررسی رفتارحرارتی ایوان در خانه‌های سنتی اصفهان جهت بازخوانی آن در معماری کنونی با هدف بهینه‌سازی مصرف انرژی

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of the Thermal Behavior of Iwan in the Traditional Houses of Isfahan for its Reflection in Contemporary Architecture for Energy Consumption Optimization

نویسندگان [English]

  • Narges Dehghan 1
  • Farzaneh Akrami 2
  • Abbas Maleki 2
1 Department of Architecture, Advancement in Architecture and Urban Planning Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
2 Department of Architecture, Advancement in Architecture and Urban Planning Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
چکیده [English]

Statement of the Problem: An important part of the annual energy consumption of countries is related to the building sector. Accordingly, saving energy and finding solutions for annual energy consumption in this sector are of great importance given the issue of the energy crisis in the current century and the position of environmental protection. Although different methods have been used in this regard in the traditional architecture of our country, energy consumption regarding the building sector has received less attention in today’s architecture due to various reasons such as population and urban growth and the lack of attention to spatial quality. Due to the high share of energy consumption in the house, the physical elements of the house can play an important role in reducing energy consumption. In addition, the semi-open element of Iwan is an efficient model in terms of function and climate, including temperature adjustment and provision of thermal comfort conditions. This element is semantically space-creating, which brings a wide variety of valuable experiences regarding understanding space and nature, the role of which has been greatly diminished in today’s architecture.
Research Question: What is the optimal model of Iwan with regard to saving energy consumption in old houses in Isfahan?
Background and Objectives: Older houses with passive solar systems are more energy-efficient than the new ones. To direct architects toward using the elements and physical proportions of traditional houses, the present study seeks to find the most optimal Iwan pattern in the traditional houses of Isfahan in terms of energy saving. Further, the study aims at achieving the optimal shape and location of the Iwan through communication with side spaces such as halls, Shahneshin, and rooms, followed by providing suggested solutions for improving the energy efficiency of contemporary housing according to the results of simulating different forms of Iwan.
Materials and Methods: To this end, different patterns of Iwan in the traditional houses of Isfahan were identified and common patterns were obtained accordingly. Next, theoretical foundations were examined and the theoretical framework was presented using the descriptive-analytical method. Then, different types of Iwan and their analysis were comparatively analyzed through library and field studies of all types of Iwan, halls, and side spaces in the houses of Isfahan built from Safavid to Qajar periods, as well as typing and using reality modeling and simulation. Finally, the results of simulations were compared with each other after validating DesignBuilder software with a real sample using the dynamic simulation.
Research Findings and Conclusion: The results showed that the patterns of the Iwan of the Dehdashti and Alam’s Houses are the most efficient ones among other models in terms of energy efficiency. Given that Dehdashti House is more affordable in the summer and the cooling load in Isfahan is more important in this season compared to winter, the model of Dehdashti House is the most optimal Iwan model. In this study, the optimal Iwan is located in front of the Sedaris room on either side of the building and is connected to the room and the hall through a retaining corridor (the unconditioned space) while the length of the corridor covers half of the length of the hall.

کلیدواژه‌ها [English]

  • Iwan
  • Optimization
  • Energy Consumption
  • Traditional Houses of Isfahan
  • hot and dry climate
باقری، مهسا، کردجمشیدی، ماریا و پیراسته، شیما. 1395. ارزیابی تأثیر ایوان ساختمان‌های مسکونی در بهینه‌سازی مصرف انرژی سالانه. نشریه انرژی ایران(2): 142-133. http://necjournals.ir/article-1-847-fa.html
حاجی‌قاسمی، کامبیز. 1375. گنجنامه فرهنگ آثار معماری اسلامی ایران (دفتر چهارم: خانه‌های اصفهان). تهران: مرکز اسناد و تحقیق- شرکت توسعه فضاهای فرهنگی. https://lib1.ut.ac.ir:8443/site/catalogue/1038757
حائری مازندرانی، محمدرضا. 1388. خانه، فرهنگ، طبیعت. چاپ اول. تهران: مرکز مطالعاتی و تحقیقاتی شهرسازی و معماری.
زمردیان، زهراسادات. و تحصیل‌دوست، محمد. 1394. اعتبارسنجی نرم‌افزارهای شبیه‌سازی انرژی در ساختمان: با رویکرد تجربی و مقایسه‌ای. نشریه انرژی ایران (56). http://necjournals.ir/article-1-803-fa.html
گروت، لیندا، و وانگ، دیوید. 1398. روش‌های تحقیق در معماری. تهران: دانشگاه تهران.
لکنر، نربرت. 1396. گرمایش؛ سرمایش؛ روشنایی (رویکردهای طراحی برای معماران). تبریز: دانشگاه هنر اسلامی تبریز.
محمودی، عبدالله. 1384. بازنگری اهمیت ایوان در خانه‌های سنتی؛با نگاه ویژه به بم. نشریه هنرهای زیبا (22): 62-53. https://journals.ut.ac.ir/article_10738.html
معماریان، غلامحسین. 1386. آشنایی با معماری مسکونی ایرانی گونه شناسی درونگرا. چاپ چهارم. تهران: سروش دانش.
مهدیزاده سراج، فاطمه، جاپلقی، غلامرضا و صنایعیان، هانیه. 2015. تأثیر وجود پیش ورودی بر رفتار حرارتی فضای اصلی در اقلیم گرم‌ و‌ خشک ایران (بررسی خانه‌های قدیمی شهر یزد). معماری و شهرسازی ایران 5(8). https://dx.doi.org/10.30475/isau.2015.61991
Albatici, R., Passerini, F., & Pfafferott, J. 2016. Energy Performance of Verandas in the Building Retrofit Process. Energies, 9(5): 365.  https://doi.org/10.3390/en9050365
Asadi, S., Fakhari, M., & Sendi, M. 2016. A study on the thermal behavior of traditional residential buildings: Rasoulian house case study. Journal of Building Engineering(7): 334-342.  https://doi.org/10.1016/j.jobe.2016.07.012
Cetin, K. S., Fathollahzadeh, M. H., Kunwar, N., Do, H., & Tabares-Velasco, P. C. 2019. Development and validation of an HVAC on/off controller in EnergyPlus for energy simulation of residential and small commercial buildings. Energy and Buildings(183): 467-483. https://doi.org/10.1016/j.enbuild.2018.11.005
Chan, A., & Chow, T. T. 2010. Investigation on energy performance and energy payback period of application of balcony for residential apartment in Hong Kong. Energy and Buildings42(12): 2400-2405.  https://doi.org/10.1016/j.enbuild.2010.08.009
Hensen, J. 2002. Simulation for performance based building and systems design: some issues and solution directions. Paper presented at the In Proceedings 6th International Conference on Design and Decision Support Systems in Architecture and Urban planning, Ellecom.
Hilliaho, K., Köliö, A., Pakkala, T., Lahdensivu, J., & Vinha, J. 2016. Effects of added glazing on Balcony indoor temperatures: Field measurements. Energy and Buildings(128): 458-472.  https://doi.org/10.1016/j.enbuild.2016.07.025
Khashei, Z. 2010. The role of passive systems in providing comfort in traditional houses in Isfahan: a case study of the Karimi house. WIT Transactions on Ecology and the Environment(128): 271-280.  https://doi.org/10.2495/ARC100231
Kim, G., & Kim, J. T. 2010. Luminous impact of balcony floor at atrium spaces with different well geometries. Building and Environment 45(2): 304-310.  http://dx.doi.org/10.1016%2Fj.buildenv.2009.08.014
Kowaltowski, D. C. K., Labaki, L. C., Pina, S. A. M. G., Ruschel, R. C., da Silva, V. G., & Alves, S. A. 2004. Verandas, Ventilation and Vegetation important thermal comfort elements in self-built houses in Brazil. social housing(5): 6-8.
Lapinskiene, V. 2013. The Framework of an Optimization Model for Building Envelope. Procedia Engineering(57): 670–677. doi:10.1016/j.proeng.2013.04.085
Montazeri, H., & Blocken, B. 2013. CFD simulation of wind-induced pressure coefficients on buildings with and without balconies: validation and sensitivity analysis. Building and Environment(60): 137-149. https://doi.org/10.1016/j.buildenv.2012.11.012
Nematchoua, M. K., Tchinda, R., & Orosa, J. A. 2014. Thermal comfort and energy consumption in modern versus traditional buildings in Cameroon: A questionnaire-based statistical study. Applied Energy(114): 687-699. doi:https://doi.org/10.1016/j.apenergy.2013.10.036
Omrani, S., Garcia-Hansen, V., Capra, B. R., & Drogemuller, R. 2017. On the effect of provision of balconies on natural ventilation and thermal comfort in high-rise residential buildings. Building and Environment(123): 504-516.  https://doi.org/10.1016/j.buildenv.2017.07.016
Soflaei, F., Shokouhian, M., & Soflaei, A. 2017. Traditional courtyard houses as a model for sustainable design: A case study on BWhs mesoclimate of Iran. Frontiers of Architectural Research 6(3): 329-345. doi:https://doi.org/10.1016/j.foar.2017.04.004
Yang, Y. 2014.  Balconies in Shanghai, thermal bridges or sun shadings. Paper presented at the ASim2014 The 2nd Asia Conference of International Building Performance Simulation Association, Japan.