تحلیل تاثیر هندسه قوس های کند و تند بر کیفیت صوتی سالن‌های سخنرانی

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانشجوی دکتری، معماری، هنر و معماری، دانشگاه آزاد اسلامی واحد شهرکرد، شهرکرد، ایران

2 استاد مدعو، گروه معماری، واحد شهرکرد، دانشگاه آزاد اسلامی، شهرکرد، ایران.(هیأت علمی گروه معماری، دانشگاه تربیت مدرس، تهران).

چکیده

بیان مساله: از گذشتگان تا امروز کیفیت صوتی در کالبد فرم معماری فضاهای جمعی مورد توجه معماران قرار داشته است. تا به حال معادله برازش(تعیین معادله درجه سه نقاط روی خم ها با تقسیم مساوی) و کالبد فرم قوس های کند و تند از دیدگاه آکوستیکی فضای سخنرانی بزرگ مقیاس مورد مطالعه و بررسی قرار نگرفته است. با تحلیل و بررسی معادله برازش و کالبد فرم در قوس­ های تند و کند پرکاربرد از دیدگاه آکوستیک، می‌توان به ساختار شکلی و ریاضی قوس متناسب با کیفیت صوتی پی‌برد که به صورت مستقیم تحت تأثیر حجم، سطح، ارتفاع به دهانه و برازش منحنی قوس می­ باشد. پژوهشگران کیفیت صوتی فرم سقف منحنی باتوجه به نوع قوس، مصالح، ارتفاع و تاریخچه آن‌ها پرداخته‌اند. این مقاله تأثیر قوس کند و تند با تفکیک بر اساس معادله برازش منحنی و بر اساس کندی و تندی ترسیمی در معماری سنتی در قوس­های پرکاربرد ایرانی از دید کیفیت صوتی فضای سخنرانی مورد بررسی قرار می­ دهد.
سوال تحقیق: سوال اصلی این است که پارامترهای معماری و معادله برازش منحنی انواع قوس های کند و تند چه تاثیری بر کیفیت صوتی سالن سخنرانی دارند؟
اهداف تحقیق: پژوهش حاضر به بررسی مولفه ­های اکوستیکی فضای سخنرانی در سه گروه فرم گنبدی و تاقی و تاقی چرخشی در انواع چفد پرکاربرد با توجه به کندی و تندی قوس­ ها از لحاظ عنوان سنتی توسط استاد کاران معماری ایران و کندی و تندی قوس­ ها بر اساس معادله­ های برازش منحنی پرداخته شود.
روش تحقیق: جمع ­آوری داده ­ها بر پایه داده‌های کتابخانه‌ای و قوس ­های شبیه سازی شده می­ باشد. با استفاده از شیوه ترکیبی (شبیه­ سازی، تحلیل توصیفی) در دسته‌بندی مقالات کاربردی جای می‌­گیرد، روش تحقیق بدین‌گونه که پس از ترسیم دقیق نمونه‌ها به روش استادکاران به صورت الگوریتمی در نرم­افزار گرس­ هاپر و سپس به محاسبه برازش منحنی با روش ماتریسی با نرم افزار اس­ پی ­اس ­اس22 پرداخته شد. بعد از آن شبیه ­سازی آکوستیکی با استفاده از نرم ­افزار اودون انجام گرفته است. تحلیل توصیفی قوس­ ها با نمودار ویلیون توسط نرم افزار آراستدیو و تحلیل همبستگی قوس کند و تند میان متغییر­های معماری و آکوستیکی با روش اسپیرمن با نرم افزار اس­ پی ­اس­ اس پرداخته شد.
مهم ­ترین یافته ­ها و نتیجه ­گیری تحقیق: تحلیل‌ها آشکار ساخت که قوس ­های کند در زمان واخنش و شاخص انتقال­ گفتار دارای میانه بالاتر و در مولفه وضوح گفتار دارای میانه پایین ­تر از قوس تند می­ باشد. کاهش حجم فرم ­ها موجب افزایش مقدار شاخص انتقال گفتار و کاهش زمان واخنش و وضوح گفتار می­ گردد. بهتر است در فضاهای سخنرانی با سقف گنبدی یا طاقی از قوس های کند استفاده گردد در فرم­ های طاقی محل قرار گیری سخنران در ضلع کناری یا در محور عمود بر محور اصلی قرار گیرد.

چکیده تصویری

تحلیل تاثیر هندسه قوس های کند و تند بر کیفیت صوتی سالن‌های سخنرانی

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect analysis the geometry obtuse and acute arcs On the acoustic quality of lecture halls

نویسندگان [English]

  • Fereshteh Kamrani 1
  • Mansour Yeganeh 2
  • Mohamad Reza Bemanian 2
1 Department of Architecture, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
2 Department of Architecture, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran(Associate Professor at the Faculty of Art tarbiat modares)
چکیده [English]

Research Problem: From the past, acoustic quality in the architectural form of collective spaces has been considered by architects. So far, the curve fitting equation and the form of acute and obtuse arcs have not been studied acoustically in large-scale lecture space. Researchers have studied the sound quality of curved roof shapes according to the type of arch, materials, height and their history. By analyzing the equation of curve fitting and form in acute and obtuse arcs in acoustics, it is possible to understand the form and computational structure of the arc based on acoustic quality, Which is directly affected by volume, surface, height to the opening and the curve fitting equation. Impaired speech and language communication is a factor in not paying attention to the acoustic quality of the environment. However, indoor acoustic environments are not limited to professional performance spaces. In recent years, architectural acoustics have used music in non-professional spaces, such as spaces such as offices, libraries, multipurpose spaces, lecture halls, etc. When a speech signal is transmitted in a space, the speech transmission index, the bending time and the speech resolution of this frequency in the transmission path are affected by the architectural form and change and affect the sound quality of the environment.
Research Question: What is The effect of architectural parameters and curve fitting equation of acute and obtuse arcs on the components of acoustic quality? What is the relationship between architectural parameters and acoustic quality components?
Research Method: Data collection is based on library data and simulated arcs. Using the combined method (simulation, descriptive analysis) is placed in the category of applied articles. After drawing the samples by the algorithm method in Grasshopper software, then the fitting curve by the matrix method was calculated with SPSS 22 software. After that, acoustic simulation was performed using odeon software. Descriptive analysis of arches with violin diagram was performed by RStudio software. Acute and ambiguous arc correlation analysis between architectural and acoustic variables was performed by Spearman method with SPSS software. Spearman correlation coefficient was used to test the relationship between non-parametric acoustic and architectural variables.
The Most Important Results and Conclusion: Improving the acoustic quality in the lecture space is one of the most important goals of the architectural design of this space.The roof of the building is one of the most important factors that play an effective role in acoustic quality.Curved ceilings, despite their use and superior thermal quality, are good examples for reviewing and improving the acoustic quality of the lecture space.The analyzes revealed that the acute arcs at the reverberation time (RT) and speech transmission index (STI) had a higher median and at the clarity (C80) had a lower median than the obtuse arc. Decreasing the size of the forms increases the value of the speech transmission index (STI) and decreases the reverberation time (RT) and the clarity (C80). In the present study, the acoustic quality among the two groups of acute and obtuse forms of Iranian arcs is widely used. is

کلیدواژه‌ها [English]

  • Lecture hall
  • Obtuse arcs
  • Acute arcs
  • Curve fitting
  • Form
ایزدپناه, فرزین. (2018). کاربرد برازش خم و روش حداقل مربعات برای بررسی هندسۀ قوسهای ایرانی. نشریه ریاضی و جامعه, 3(1), 41-53. https://doi.org/10.22108/msci.2018.24929.1130
پور, ص., هادی, & پورمند. (2012). معنای پوشش در معماری عصر صفوی. نشریه هنرهای زیبا-معماری و شهرسازی, 17(1), 39-48 (10.22059/JFAUP.2012.29695)
پیرنیا, م. (1994). چفدها و طاقها-چفدها،15(24)، 5-45. http://journal.richt.ir/athar/article-1-357-fa.html ،
رضازاده اردبیلی, م., سیدی ساروی, م. و طاهری امیری, س. (1397). مطالعه ی تطبیقی پلان و گنبد جمعه مسجد اردبیل با پلان ها و گنبدهای مشابه به جهت بررسی ترسیم صحیح منحنی گنبد. معماری و شهرسازی (هنرهای زیبا), (23). )https://www.sid.ir/fa/journal/ViewPaper.aspx?id=483901)
مجیدی. (2020). تاثیر توزیع نرمال و روش کمترین حداقل مربعات در تئوری خطاها. نشریه عمران و پروژه, 2(3), 59-69 http://www.cpjournals.com/issue_14412_15113.html
نیما ولی بیگ , ف. م. ز. س., فرهاد تهرانی. (2012). ویژگی های هندسی و ریاضی در ساختار چفد پنج او هفت تند در پوشش تاق آهنگ ایرانی. نشریه علمی مرمت و معماری ایران, 1(3), 39-50. (https://iranjournals.nlai.ir/bitstream/handle/123456789/521365/108858BC53580C252593A071D00EBB8F.pdf?sequence=-1)
Barnett, P., & Acoustics, A. (1999). Overview of speech intelligibility. Proceedings-Institute of Acoustics, 21(5), 1-16.
Barron, M. (2009). Auditorium acoustics and architectural design. Routledge.317. https://doi.org/10.4324/9780203874226
Beranek, L. (2011). Concert hall acoustics. Architectural Science Review, 54(1), 5-14. https://doi.org/10.3763/asre.2010.0059
Bork, I. (2000). A comparison of room simulation software-the 2nd round robin on room acoustical computer simulation. Acta Acustica united with Acustica, 86(6), 943-956. https://www.ingentaconnect.com/content/dav/aaua/2000/00000086/00000006/art00008
Brüel, & Kjær. (2011). Case study: University of Windsor, Canada -Validation of Lecture Hall Acoustics Through Experimental and Computer Analysis.
Cairoli, M. (2018). Architectural customized design for variable acoustics in a multipurpose auditorium. Applied acoustics, 140, 167-177. https://doi.org/10.1016/j.apacoust.2018.05.026
Eldakdoky, S., & Elkhateeb, A. (2017). Acoustic improvement on two lecture auditoria: Simulation and experiment. Frontiers of Architectural Research, 6(1), 1-16. https://doi.org/10.1016/j.foar.2016.11.002
Elkhateeb, A., Adas, A., Attia, M., & Balila, Y. (2016). Absorption characteristics of masjid carpets. Applied acoustics, 105, 143-155. https://doi.org/10.1016/j.apacoust.2015.12.005 
Elkhateeb, A. A. (2012). Domes in the islamic architecture of Cairo city: a mathematical approach. In Architecture, Systems Research and Computational Sciences (pp. 151-176). Springer. https://link.springer.com/chapter/10.1007/978-3-0348-0393-9_12
Foteinou, A., & Murphy, D. T. (2012). The control of early decay time on auralization results based on geometric acoustic modelling. Baltic Nordic Acoustics Meeting (BNAM2012), https://eprints.whiterose.ac.uk/75128/
GOŁAŚ, A., & SUDER-DĘBSKA, K. (2009). Analysis of Dome Home Hall theatre acoustic field. Archives of Acoustics, 34(3), 273–293. http://acousticsnew.ippt.pan.pl/index.php/aa/article/viewFile/579/510
Gramez, A., & Boubenider, F. (2017). Acoustic comfort evaluation for a conference room: A case study. Applied acoustics, 118, 39-49. https://doi.org/https://doi.org/10.1016/j.apacoust.2016.11.014
Halli, S. S., Rao, K. V., & Rao, V. K. (1992). Advanced techniques of population analysis. Springer Science & Business Media https://books.google.com/books?hl=en&lr=&id=qBoGCAAAQBAJ&oi=fnd&pg=PA1&dq=Advanced+techniques+of+population+analysis.+&ots=GOjThDYCX4&sig=a2dEtCFbLNfiv37Cd4aHkXjs_Ko
Hossam Eldien, H. F., Yasser. (2013). The Effect of Domes Shape on the Acoustics of Mosques.2
Huerta, S. (2007). Oval domes: History, geometry and mechanics. Nexus Network Journal, 9(2), 211-248. https://link.springer.com/article/10.1007/s00004-007-0040-3
Inoue, S., Sugino, K., Katou, M., & Imaizumi, H. (2009). Speech transmission performance and the effect of acoustical remedies in a dome. Applied acoustics, 70(1), 221-230. https://doi.org/10.1016/j.apacoust.2007.12.004
Kaarlela-Tuomaala, A., Helenius, R., Keskinen, E., & Hongisto, V. (2009). Effects of acoustic environment on work in private office rooms and open-plan offices–longitudinal study during relocation. Ergonomics, 52(11), 1423-1444. https://doi.org/10.1080/00140130903154579
Kassim, D. H., Putra, A., Nor, M., & Muhammad, N. (2014). Effect of pyramidal dome geometry on the acoustical characteristics in a mosque. Journal of Mechanical Engineering and Sciences, 7, 1127-1133. https://journal.ump.edu.my/jmes/article/view/8043
Kuttruff, H., & Mommertz, E. (2013). Room acoustics. In Handbook of engineering acoustics (pp. 239-267). Springer. https://link.springer.com/book/10.1007/978-3-540-69460-1?utm_medium=referral&utm_source=google_books&utm_campaign=3_pier05_buy_print&utm_content=en_08082017
Mihai, T., & Iordache, V. (2016). Determining the indoor environment quality for an educational building. Energy Procedia, 85, 566-574. https://doi.org/10.1016/j.egypro.2015.12.246
Munteanu, C., Bogdan, D., Mihaela, M. L., Cobîrzan, N., Tămaș-Gavrea, D. R., & Babota, F. (2018). The acoustic properties of the lecture hall of the Faculty of Building Services in Cluj-Napoca. Procedia Manufacturing, 22, 331-338.https://doi.org/10.1016/j.promfg.2018.03.050
Naylor, G. M. (1993). ODEON—Another hybrid room acoustical model. Applied acoustics, 38(2-4), 131-143.https://doi.org/10.1016/0003-682X(93)90047-A
Nowoświat, A., Olechowska, M., & Marchacz, M. (2020). The effect of acoustical remedies changing the reverberation time for different frequencies in a dome used for worship: A case study. Applied acoustics, 160, 107143. https://doi.org/10.1016/j.apacoust.2019.107143
Nowoświat, A., & Pokorska-Silva, I. (2018). The influence of thermal mass on the cooling off process of buildings. Periodica Polytechnica Civil Engineering, 62(1), 173-179. https://doi.org/10.3311/PPci.10132
Othman, A. R., & Mohamed, M. R. (2012). Influence of Proportion towards Speech Intelligibility in mosque's praying hall. Procedia-Social and Behavioral Sciences, 35, 321-329. https://doi.org/10.1016/j.sbspro.2012.02.094
Peters, B. (2010). Acoustic performance as a design driver: sound simulation and parametric modeling using Smartgeometry. International Journal of Architectural Computing, 8(3), 337-358  https://doi.org/10.1260/1478-0771.8.3.337
Robinson, P. W., Siltanen, S., Lokki, T., & Savioja, L. (2014). Concert hall geometry optimization with parametric modeling tools and wave-based acoustic simulations. Building Acoustics, 21(1), 55-63. https://doi.org/10.1260/1351-010X.21.1.55
Savale, P. (2014). Effect of noise pollution on human being: Its prevention and control. J. Environ. Res. Develop, 8(4), 1026-1036.
Savioja, L. (2010). Real-time 3D finite-difference time-domain simulation of low-and mid-frequency room acoustics. 13th Int. Conf on Digital Audio Effects, http://www.dafx.de/paper-archive/2010/DAFx10/Savioja_DAFx10_P43.pdf
Savioja, L., Manocha, D., & Lin, M. (2010). Use of GPUs in room acoustic modeling and auralization. Proc. Int. Symposium on Room Acoustics, https://acoustics.asn.au/conference_proceedings/ICA2010/cdrom-ISRA2010/Papers/O5e.pdf
Siltanen, S., Lokki, T., Tervo, S., & Savioja, L. (2012). Modeling incoherent reflections from rough room surfaces with image sources. The Journal of the Acoustical Society of America, 131(6), 4606-4614. https://doi.org/10.1121/1.4711013
Silver, N. (2012). The signal and the noise: Why so many predictions fail-but some don't. Penguin.ttps://doi.org/10.1097/ALN.0b013e3182a17d02
Sü, Z., & Yilmazer, S. (2008). The acoustical characteristics of the Kocatepe Mosque in Ankara, https://doi.org/10.3763/asre.2008.5104 Turkey. Architectural Science Review, 51(1), 21-30.
Svensson, P., & Kristiansen, U. R. (2002). Computational modelling and simulation of acoutic spaces. Audio Engineering Society Conference: 22nd International Conference: Virtual, Synthetic, and Entertainment Audio, https://www.aes.org/e-lib/browse.cfm?elib=11119
Xiao, J., & Aletta, F. (2016). A soundscape approach to exploring design strategies for acoustic comfort in modern public libraries: A case study of the Library of Birmingham. Noise Mapping, 3(1) https://doi.org/10.1515/noise-2016-0018.
Yeh, C.-Y., & Tsay, Y.-S. (2021). Using Machine Learning to Predict Indoor Acoustic Indicators of Multi-Functional Activity Centers. Applied Sciences, 11(12), 5641 https://doi.org/10.3390/app11125641
Zhao, S., Qiu, X., Cheng, E., Burnett, I., Williams, N., Burry, J., & Burry, M. (2015). Sound quality inside small meeting rooms with different room shape and fine structures. Applied acoustics, 93, 65-74.https://doi.org/10.1016/j.apacoust.2015.01.020